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Abstract: Automating fruit detection is a continuous challenge due to its complexity. Because fruit varieties and subtypes may
vary by geography, manually classifying fruits can be challenging. The Fruit-360 dataset was categorised using convolutional
neural network-based techniques (e.g., VGG16, Inception V3, MobileNet, and ResNet-18) in several recent publications.
Unfortunately, the 131 fruit classifications are not comprehensive enough to be of much service. Furthermore, the
computational efficiency of these models was poor. With 90,483 sample images and 131 fruit categories, our innovative,
comprehensive, and reliable study can recognise and predict them. A modified AlexNet-based strategy, combined with an
effective classifier, was employed to bridge the research gap effectively. The upgraded AlexNet uses the Golden Jackal
Optimisation Algorithm (GJOA) to determine the optimal feature extraction technique tuning after processing the input images.
Moreover, the Fruit Shift Self-Attention Transform Mechanism (FSSATM) serves as the final classifier. This transform
mechanism combines spatial position encoding (SPE) with a spatial feature extraction module (SFE) to increase the
transformer's accuracy.
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1. Introduction

We should be very concerned about the meals we eat, given the phenomenal rise in the current population. Nutritionists promote
fruits as a rich source of nutrients, and most individuals incorporate them into their regular diets [1]. Over the years, several
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approaches to fruit identification using computer vision technology have been developed. The goal of these methods is to
classify and differentiate between different kinds of fruits in a picture library [2]. Both academics and industry professionals
agree that fruit classification is a difficult and divisive topic. Grocery store employees may quickly determine the price of a
specific fruit, for instance, by classifying it [3]. Additionally, nutritional recommendations are beneficial because they guide
customers in selecting appropriate foods to meet their health and nutritional needs [4]. Automated fruit packaging is a common
practice in most food processing plants. Because different regions within the same nation have distinct fruit varieties and
subtypes, the laborious process of manually classifying fruits remains an ongoing challenge. This huge difference is based on
the necessary components found in fruits, which vary by population and location [5]. The use of artificial intelligence is rapidly
expanding across all facets of society, and the food and agriculture sectors are no exception. Among the various fields that have
found applications for Al are medicine, teaching, farming, and many more [6].

Artificial Intelligence (Al) has found several applications in healthcare, including the diagnosis of skin cancer, the identification
of various anatomical objects, the prediction of neurodevelopmental abnormalities in children, and mental health [7]. The
world's population is growing, the climate is changing, and humans have created other environmental risks, all of which threaten
agriculture and may ultimately lead to increased food demand [8]. In this regard, it appears that computer vision-driven Agtech
businesses and artificial intelligence (Al) are saviours, as they expedite various procedures, including harvesting, quality
control, picking and packaging, sorting, and grading [9]. Fruits are particularly vulnerable because of their fragility and rapid
spoilage. Improper and delayed fruit grading, categorisation, and identification by unskilled personnel result in the loss of 30—
35% of the collected fruits [10]. Classifying fruits is the most important and challenging part of buying and selling fruit. Anyone
involved in the fruit trade needs to be well-versed in the many kinds of fruit to set fair prices. Therefore, it's important to know
how to identify various fruit kinds [11]. Marketing and dataset analysis are just a few of the many fields that have found success
with Al and ML techniques [12]. Consequently, several researchers have been interested in applying proven methods to
automated fruit categorisation, driven by rapid advances in machine learning, especially over the last decade [13].

Form, size, texture, and colour are among the external quality descriptors researchers often use in their studies. Most of the
proposed classifiers either failed to identify any fruit at all accurately or could identify only a specific type of fruit [14]. We
now have a plethora of tools for sorting, identifying, and grading seeds, fruits, and vegetables. Various fruit classes have
prompted the proposal of distinct categorisation schemes. Identifying and categorising fruit illnesses was the focus of several
researchers [15]. The previous model was based on the VGG19 architecture. When classifying illnesses in fruits, their model
achieved nearly 99% accuracy. In this study, FSSATM is used for classification, while modified AlexNet is used for feature
extraction. Afterwards, a more efficient noise-removal technique, the IBFTF algorithm, is developed. To improve classification
accuracy, GJOA is used to fine-tune the proposed models.

2. Related Works

Using Augment Yolov3, Karthikeyan et al. [16] established a new YOLOAPPLE system for classifying apples into three
categories: normal, damaged, and red delicious. To achieve better outcomes in the next iteration, consider grabbing Apple's
backdrop. To maintain feature loss preferences during training, they enrich Yolov3 with additional spatial functions. Yolov3 is
enhanced by incorporating a backbone and utilising a feature pyramid network before the object detector to add spatial pyramid
pooling features. Ultimately, the fully linked layer will determine whether an apple is normal, damaged, or a Red Delicious.
Comparing the Augment Yolov3 model to the traditional Yolov3 and Yolov4 deep learning models, the former achieves a mean
average precision of 90.13%, while the latter enables a multi-class detection and identification system. To improve localisation
and achieve exact multi-item detection, experimental results were obtained using a newly constructed object recognition model
trained on a dataset. To determine the potential harvest of Citrus unshiu fruit, Kwon et al. [17] investigated the optimal height
for UAV photography. Based on the regular diameter of C. unshiu fruit (46.7 mm), we found that a resolution of about 5
pixels/cm is required for meaningful calculation of fruit size. We obtained these photos from five different sources.
Furthermore, we found that when comparing photos with and without histogram equalisation, the fruit count estimate was
significantly higher with the latter. Normal image estimates for photos taken at 30 m height are 73, 55, and 88 fruits,
respectively. Nevertheless, the image estimations of 88, 71, and 105 were histogram equalised. There are a total of 141 fruits,
88 fruits, and 124 fruits.

The estimated value was comparable to that of histogram equalisation when using a Vegetation Index like IPCA, although there
was a discrepancy between the 11 estimate and the actual yields. For future studies on uncrewed aerial vehicle (UAV)
applications in citrus fruit yield, our results provide a valuable database for reference. In this way, the system can produce
reliable findings, and using flying stages, such as UAVs, can be a step towards implementing this type of system across ever-
greater territories at a reasonable cost. In their study, Raihen and Akter [18] employed a variety of ML and DL techniques,
including: logistic regression, XGBoost, LightGBM, Random Forest, Decision Tree, K-Nearest Neighbour, Support Vector
Machine (SVM), and Artificial Neural Network (ANN). Traditional measures are employed to evaluate the study's
effectiveness. Of the fourteen models, two use the caret, H20, neuralnet, and keras packages; the other, LightGBM, achieves
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an accuracy of 90.30%, while AdaBoost achieves 98.40%. Both models also have ROC curve scores around 90%. A high-
density genetic map of the F2 population was developed by Shu et al. [19]. It encompassed linkage groups and included 1,347
bin markers. The F2 population's trait segregation study reveals that a single locus controls the colour of both immature and
mature fruits. The locus controlling the colour of immature fruits was found to be tightly linked to bin markers 19 on
chromosome 1 and 849 on chromosome 6. It has been suggested that the inactive shikimate kinase-like two gene could be a
potential regulator of immature fruit colour, and that the capsanthin-capsorubin synthase gene could be responsible for the
yellow hue in HNUCCL16 pepper fruits, based on the conversion of the two bin markers into dCAPS markers. In summary, the
results provide new insights into how colour develops and offer a tool for molecular breeding and genetic enhancement of
pepper fruit colour.

Patel and Patil [20] proposed an integrated grading system and an intelligent system for automated detection and categorisation
of banana fruit sickness. The proposed system uses deep learning models, machine learning algorithms, and computer vision
techniques to identify and grade illnesses accurately. Using image processing methods, the system collects crucial information
from pictures of banana fruits, which are then fed into a trained classification model. To classify bananas into several disease
groups, the classification model employs state-of-the-art algorithms. The complex grading system also takes into account the
size, colour, and texture of the sick fruit, among other factors, to determine its severity and quality. High disease-detection
accuracy and accurate banana grading are two key outcomes of the experiments, demonstrating that the proposed strategy is
effective. Banana growers and other agricultural stakeholders may save time and money with an automated device that controls
diseases in plantations. In citrus fruit identification algorithms, Lin et al. [21] address issues of low detection accuracy and
frequent missed detections, particularly under occlusion conditions. It presents AG-YOLO, a network that combines contextual
information through attentiveness. Using YOLO leverages its ability to gather comprehensive contextual information from
neighbouring scenes. Furthermore, it incorporates a Global Context Fusion Module (GCFM) that enhances the model's ability
to recognise obstructed targets by allowing local and global information to interact and fuse via self-attention. To analyse AG-
YOLOQO's performance, an independent dataset was compiled containing over 8,000 outdoor photos. A subset of 957 photos that
met the requirements for occlusion scenarios involving citrus fruits was selected after a careful screening procedure.

This dataset covers a wide range of complex situations, including occlusion, extreme occlusion, overlap, and extreme overlap.
On this dataset, AG-YOLO performed exceptionally well, achieving P-values of 90.6%, mAP@50 of 83.2%, and mAP@50:95
of 60.3%. The effectiveness of AG-YOLO is confirmed by these measures, which outperform the current popular object
identification algorithms. By successfully addressing occlusion detection, AG-YOLO achieved a frame rate of 34.22 FPS
without compromising detection accuracy. Notably, both speed and accuracy are preserved at 34.22 FPS, demonstrating a
considerably faster performance. This is especially true while dealing with the intricacies of occlusion difficulties. When it
comes to object detection, AG-YOLO clearly outperforms previous models in efficiently handling severe occlusions, achieving
high localisation accuracy, low missed-detection rates, and fast detection speed. This highlights its role as a dependable and
effective solution to the challenge of handling heavy occlusions in object recognition. To identify several mango diseases and
differentiate them from healthy specimens, Reddy et al. [22] employed an image classification technique. The preprocessing
phase consists of two main steps: background removal and contrast enhancement. Histogram equalisation is a technique for
improving picture contrast. Using instance segmentation, a crucial procedure, is the next step after the preprocessing stage. A
Convolutional Recurrent Neural Network (CNN_FOA) Optimiser is fed the collected radiomic properties. The CNN FOA is
used for categorising mango photos. Experimental verification and validation have shown that the projected perfect crops
provide optimal results with a 97% accuracy rate.

To identify when olive fruits of different cultivars are ripe in an orchard setting, Zhu et al. [23] suggest a new method called
Olive-EfficientDet. For more accurate fruit maturity stage classification, Olive-EfficientDet uses a convolutional block
attention module (CBAM) that is logically incorporated into the backbone network. When it comes to occlusion and overlap
of olive fruits, the upgraded system is built to fuse semantic linkages and position information across multiple layers fully. The
experimental findings demonstrated that the suggested Olive-EfficientDet offers a reliable method for determining when olive
fruits are ripe in orchard settings. For olive varieties 'Frantoio,' 'Ezhi 8',' 'Leccino,’ and 'Picholine,' the mean average precision
(mAP) of fruit maturity detection was 94.60%, 93.50%, 93.75%, and 96.05%, respectively. The average detection time per
picture was 337 ms, and the model size was a mere 32.4 MB. Furthermore, the Olive-EfficientDet demonstrates remarkable
flexibility in handling complex lighting, occlusion, and overlapping in difficult, uncontrolled orchard settings. Using Olive-
EfficientDet and other cutting-edge technologies to detect ripeness, researchers conducted comparative trials. In a comparison
of four cultivars, Olive-EfficientDet outperformed SSD, EfficientDet, YOLOV3, and Faster R-CNN in mAP for detecting ripe
olive fruits. With its impressive model size and speed, Olive-EfficientDet achieved the highest mAP for detecting ripe olive
fruits in orchard settings. This work can serve as a technical basis for olive harvesting robots to detect when fruits are ripe. It
has been addressed by Vinisha and Bod [24] in the development of an innovative tumour detection system that relies on UNets
trained on fruit flies (TFFbU). Trypetidae fruit flies were also more fit after using the UNet pooling module. The best results
have usually come from there. The initial step in training the system was to use the datasets typically sourced from the internet.
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Consequently, the training mistakes are removed in the TFFbU's main layer before data cleaning. Then, the UNet dense layer
is employed for tumour detection and segmentation.

Finally, the constructed TFFbU is tested and validated by running the proposed model in MATLAB. Several metrics, including
recall, accuracy, precision, Dice coefficient, and Jaccard index, are used to evaluate the model. The novel TFFbU model being
planned can also segment and forecast different tumour types. By incorporating a loss function into the U-Net decoder, Li et
al. [25] propose a canopy labelling method well-suited to the U-Net and a lightweight segmentation network. This approach
significantly decreases the computational complexity needed for large-scale canopy segmentation. Datasets collected from two
separate lychee orchards over two seasons were used to verify the practicality and efficacy of the proposed strategy. Compared
to the basic U-Net model, the enhanced U-Net achieved a higher average recognition rate of 90.98% and a lower floating-point
operations per second (FLOPs) of 50.86%. Since it does not require repetitive sampling of the same region, the suggested model
is more efficient than prior YOLACT-based instance segmentation approaches. It also outperformed popular semantic
segmentation models, such as Deeplabv3+ and ResNet50-U-Net, under identical experimental conditions. With the number of
sampled tiny pictures decreased from 194 to 78 in the same region, total efficiency improved by 148%, yielding superior
segmentation results. To facilitate precise orchard management, the suggested approach can be used to extract and locate the
crown of a lychee tree.

3. Proposed System
3.1. The Fruit-360 Dataset

With 67,692 images in the training set, besides 22,688 in the test set, Fruit-360 has a total of 90,483 fruit photographs [26].
There are 131 distinct fruit kinds in the collection, and each fruit has a single fruit picture. The dimension of these photos is
100 x 100 pixels. The number of photographs in the training and test sets varies slightly across fruit types; nonetheless, it is
common to have around images per fruit variety. A twenty-second video of fruit being gently spun by a motor is used to obtain
these photos, and the frames/images are extracted from that movie. To set the stage for the capture, a blank piece of white paper
is utilised. Then, a dedicated algorithm gets to work removing the fruit's backdrop. Because the backdrop might be affected by
changing light intensity, it must be eliminated.

3.2. Pre-Processing

Due to external environmental influences, the fruit dataset images often exhibit low contrast and irregular brightness. While
increasing contrast can make objects more visible, it can also amplify noise, blur edges, and produce indistinct features, all of
which can reduce the accuracy of fruit detection. An image improvement technique built on the IBFTF algorithm was offered
as a solution to this problem. This technique enhances visual effects and adds richness to images, which is important for further
recognition studies. The model combined concepts of picture enhancement and image denoising using a wavelet transform to
address the problems mentioned above successfully. First, a wavelet decomposition is used to obtain the noisy image's LF and
HF coefficients. The Retinex image improvement algorithm with improved bilateral filtering strengthens the LF coefficients,
while an improved threshold function method de-noises the HF coefficients. The processed LF and HF coefficients are then
subjected to an inverse wavelet transformation to produce the rebuilt visual. To improve the technique, which successfully
addresses the previously identified issues. The precise activities of the algorithm in this study are as follows:

The low- and high-frequency components of the noise image are computed via wavelet decomposition.
The enhanced image-enhancing method handles the LF coefficients

The improved threshold function method handles the HF coefficient

The reconstructed image is obtained through wavelet rebuilding of both LF and HF coefficients

The rebuilt image is processed through a piecewise linear alteration, yielding the enhanced image

Algorithm 1 outlines the procedure depicted in the above steps.

Algorithm 1: IBFTF image augmentation

Input: Image S(x,y)

Rotate the noisy image into LF W, and HF W, coefficients

The image is launched R(x,y)

W, uses heightened bilateral filtering I (i, j) dispensation

W(,j, k1), W(, j, k1) sets the limit P, and the unique bilateral filtering window size is 2P + 1
The heightened function w k is used to estimate the HF wavelet coefficient in three parts
Process W, using f(i, j) three — segment piecewise linear transformation
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W, and W;, are reconstructed using 2D discrete wavelet f(x,y)
Output reconstructed image

3.3. Feature Extraction using Modified AlexNet Model

Currently, one of the hotspots in fruit recognition is AlexNet, the most used convolutional neural network. Due to limitations
in AlexNet, achieving an accurate diagnosis is quite challenging. The large variance, nonlinearity, and nonstationarity make
the input pictures difficult. As a result, internal covariate shifting occurs, leading to differences in the input distributions of the
AlexNet layers. This can make it extremely difficult and time-consuming to achieve parameter training precision, which
requires an appropriate setup. The FC layer in a conventional AlexNet is in the last three layers: fc6, fc7, and fc8. An FC is
made up of several interconnected layers [27]. A problem with AlexNet's FC layer is that it has too many trainable parameters.
The following outlines the process for determining the training settings for the FC layers. There are two different kinds of FC
layers in AlexNet. While the FC layers that follow (fc7 and fc8) are connected to other FC layers, the initial FC layer is
connected to the last convolutional layer. Every scenario is examined independently.

Case 1: An FC (fc6), the subsequent equations can obtain the layer’s sum of limits associated with a conveyor:

Py = Wee + Bys @
By =F (2)
W, = F x N X 02 ©)
Where:

P.s = number of parameters; W,; = is linked to a conv layer; B, = How many biases are present in a conv-linked FC layer,
where O is the size of the output picture from the preceding layer and N is the number of kernels used in that layer. F represents
the FC layer's neuron count. F=4096, N=256, and O=6 make up AlexNet's initial FC layer (fc6). Therefore,

W, = 4096 X 256 X 62 = 37,748,736 ()
B, = 4096
P = W, + By = 37,748,736 + 4096 = 37,752,832 (5)

Case 2: If you want to know how many parameters are associated with an FC layer, you can use these equations.

Pee = B + Wy (6)
By =F (7
Wg=F_, xF )
Where:

P.¢ = sum of limits; W= The sum of weights in the layer that accompanies an FC layer; B¢ = The sum of layers that is linked
to an FC layer; F = The sum of neurons in the FC layer; F_, = The sum of neurons in the layer just before the FC layer. In the
second FC layer (fc7) of AlexNet, F is 4096, and F_,= 4096. Therefore,

Bff = F = 4096

Wiy = F_; X F X 4096 X 4096 = 16,777,216

Piy = B + Wy = 4096 + 16,777,216 = 16,781,312

In the last FC layer (fc8) of F_; = 4096. Therefore,
Bff =F= 1000
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Wy = F_; x F = 4096 x 1000 = 4,096,000

P, = B + Wi = 1000 + 4,096,000 = 4,097,000

The total number of parameters in AlexNet is the sum of the parameter limits in its three FC layers.

Peotal = Peg + Py + Prea

= 37,752,832 + 16,781,312 + 4,097,000 = 58,631,144

Upon computation, Table 1 shows 62,378,344 limits in AlexNet, with 58,631,144 training parameters originating from the final
three FC layers, indicating a noteworthy percentage. Nevertheless, the overabundance of training parameters in the FC layer of

AlexNet leads to overfitting, thereby increasing the model's training and testing times.

Table 1: Sums of the AlexNet perfect

Parameters Layer Name
34,944 convl
614,656 conv2
885,120 conv3
1,327,488 conv4
884,992 convs
37,752,832 fc6
16,781,312 fc7
4,097,000 fc8

By examining the shortcomings of the conventional AlexNet model, this study modified the model's structure, as shown in
Table 1. The updated AlexNet model is depicted in Figure 1.

Output Input
* -
softmax conv1
f - %
b y mred | by s o]
relué relut
E -
Drop1 norm1
+* £ 2
Pool5 pool1
° -
relu5 conv2
BN5 BN2
* - -
conv5 relu2
* 5
relu4 norm2
* £ 3
BN4 pool2

Figure 1: Modified AlexNet model

First, the GAP serves as AlexNet's fully connected layer, reducing the overall limit on training and testing time while also
preventing overfitting. Second, to prevent internal covariate shift, the classic AlexNet uses a BN layer. The idea behind BN is
really simple. To maintain consistent means and variances during CNN training in mini-batch mode, BN normalises the layer
activations. It improves accuracy and training time while producing high-quality parameter training. The speed and training
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speed of AlexNet can be significantly increased by selecting optimal hyperparameters during the CNN development process.
The main hyperparameters influencing the CNN model's performance are the optimiser, activation kernels, and pooling kernels.
This model employs the GJOA optimisation approach, allowing for adaptive modification of the learning rate.

3.3.1. Golden Jackal Optimisation Algorithm for Fine-Tuning

Ibrahim et al. [8] developed a programme that imitates the natural hunting patterns of golden jackals. Typically hunt together.
The jackal's three phases of hunting are: (1) seeking out and approaching the prey; (2) encircling and stopping moving; and (3)
lunging in the direction of the prey. Equation (9) generates a randomly distributed collection of prey site matrices during the
initialisation phase:

[ Y1,1 Yl,j Yl,n -I
! Yo1 0™ Yo; 0 You I
| Ynoin < Yoy 0 Ynein |
[ Yny - Yng 0 Yan

Where n stands for dimensions and N for the number of prey populations, the following is the golden jackal's hunt mathematical
model. (|E| > 1):

Y; () = Ym(t) — E. |Yy(t) — rl. Prey(t) (10)

Y,(0) = Yem(t) — E. [Ypm(0) — rl. Prey(t) (11)

Where t is the present repetition, Yy, (t) indicates jackal, Ygy (t) designates the site of the female; besides, Prey(t) is the site of
the prey. Y; (t) and Y, (t) Are the female and male golden jackals' most recent locations known? E, or the prey's avoiding energy,
is computed as follows.:

E = EI' EO (12)
E;=¢.(1-(/T) (13)

where E, is a random sum in the range [-1, 1], representing the prey’s initial energy; T characterises the maximum sum of
repetitions; c1 is the default continuous set to 1.5; and E; energy. In Equations (10) and (11), |Yy(t) — rl- Prey(t)| designates
the distance between the golden jackal and prey; besides, “rl” is the vector of random statistics intended by the Levy flight

function.

rl = 0.05.LF(y) (14)

1/B
(uxo) Ir'(1+B)xsin(np/2)
LF(y) = 0.01 x o= 15
v (0]) b 9

Where u and v are accidental standards in (0, 1), and b is the evasion, set to 1.5.

Y1 (£)+Y2(t)

Yt+1) = 2

(16)

Where Y(t + 1) is the prey's current location as determined by the jackals. The escaping energy is reduced when the golden
jackals harass their prey. The golden jackals encircling and consuming their victim are represented mathematically as follows.
(E[< I):

Y; () = Ym(t) — E.|rl. Yy (t) — Prey(t)| @an

Y, (1) = Yem(t) — E. |rL. Ypm () — rl. Prey(t)| (18)

Algorithm 1: Golden Jackal Optimization
Inputs: The population size N and the maximum number of iterations T
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Outputs: The location of prey and its fitness valuelnitialize the random prey population Yi (i
=12,...N)

Calculate the fitness values of prey

Y1 = best prey individual (Male Jackal Position)

Y2 = second — best prey individual (Female Jackal Position)

Update the evading energy “E” using Equations (12) and (14)

If (|E] < 1) (Exploration phase)

Update the prey position using Equations (10), (11), and (16)

Update the prey position using Equations (16), (17), and (18)

end for

t=t+1

end while

return Y1

3.4. Classification using FSSATM

Here, we present the suggested spectral-swin with enhanced spatial extraction (SSFE), which is broken down into four parts:
the architecture, the SFE module, the SPE module, and the spectral unit.

3.4.1. Overall Construction

In this work, we develop a novel transformer-based technique for fruit categorisation called SSWT. The two main components
of SSWT—the spectral swin module and the spatial feature extraction module (SFE)—enable it to solve fruit classification
problems. The model receives a patch of features as input. First, the data is sent to SFE, whose convolutional layers and spatial
attention module extract the initial spatial features. Subsequently, the data is compressed and sent to the module. To provide
spatial structure to the data, a spatial location encoding is inserted before each s-swin transformer layer. Using linear layers
produces the final classification results.

3.4.2. Spatial Feature Extraction Segment

To compensate for the transformer's shortcomings, we developed a spatial feature module to process spatial data and local
characteristics. The first half utilises convolutional layers for feature extraction and batch normalisation to prevent overfitting;
this is the preliminary phase of the process. Second, there's a spatial attention mechanism that should help the model pick out
the most relevant data points. For the input patch cube I € RHE*WXC where H x W is the sum of bands. Each pixel space in |
consists of C spectral dimensions, and forms a one-hot class vector S = [s1,s2,s3, - -,sn] € R"”*™ where n is the sum of
classes. Firstly, the spatial features of fruit images are originally extracted, and the formula is exposed as shadows:

X = GELU(BN(Conv(I))) (19)

Where Conv(+) represents the convolution layer. BN(-) characterizes normalization. GELU(-) signifies a function. The layer is
exposed below:

Conv(l) = H]!zo(l * W2 4 b;) (20)

Where | is the input, J is the sum of kernels, W *™ is the jth kernel with the size of r1 x r2, and b; is the jth bias. || symbolises
a chain; besides =, it is a convolution process. After that, spatial attention may help the model identify key locations in the data.
In the case of a first-level feature map X € RE"XWXC(H' x W' is the spatial size of X), the procedure of SA is exposed in the
subsequent formula:

Sm = MaxPooling(X) (21)
Sa = AvgPooling(X) (22)
Xsp =0 (Conv(Concat(SM, SA))) ®X (23)

Worldwide average pooling in the channel direction is referred to as Average Pooling, while worldwide maximum pooling is
referred to as Maximum Pooling. "Concat" means to concatenate in the direction of the channel. So, s stands for the activation
function. "=" means to multiply elements one by one. In Figure 2, we can see the SA structure.
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Figure 2: The assemblage of spatial care in SFE

3.4.3. Spatial Site Encoding

The input fruit pictures are transferred data, which may compromise the model's structure. A spatial position is inserted before
each modifier module to specify the relative spatial locations between pixels and to preserve samples. A patch of an area serves
as the input for the fruit classification algorithm; the only thing it targets for classification is the label of the centre pixel. The
relevance of nearby pixels tends to diminish with increasing distance from the centre, although they can still contribute spatial
information for categorising the centre pixel. Such a centrally crucial position encoding is to be learned by SPE. The definition
of a patch's pixel locations is as follows:

pos(X;,yi) = X — Xc| + lyi —yel + 1 (24)

where (x.,y.) denotes the organisation of central importance to be classified. (x;,y;) shows where additional pixels in the
dataset are located. There is a unique and crucial pixel in the middle, and the remaining pixels have varying location encodings
based on their distance from the centre. The data is incorporated with learnable position encodings, allowing it to describe the
spatial structure in fruit photos flexibly:

Y = X + spe(P) (25)

Where X is the fruit image data, P characterises the site matrix-based rendering as in Equation (25). spe(-) is an array that may
be learned; to obtain the final spatial position encoding, it uses the site matrix as a subscript. The last step is to add the location
encoding to the data.

3.4.4. Spectral Swin-Transformer Segment

Transformer can handle lengthy dependencies well, but it can't extract local features. Our concept utilises a window-based
multi-head architecture, inspired by Swin-Transformer. The input cannot split the window in space like Swin-T can, since it is
a patch, which is often tiny in three-dimensional size. A spectral-shift window, known as spectral-window multi-head, was
created for MSA, leveraging the rich data in the spectral dimension. Information may be shared between neighbouring windows
via window shifting and MSA within windows, thereby enhancing local feature capture. You may use the following formula
to express MSA:

- = x?
Z = Attn(Q, K, V) = softmax ( \/@) \ (26)
Y = Concat(Z,, Z,, ..., Zpn )W 27)

The input matrices, known as queries, keys, and values, are translated into the matrices Q, K, and V. D_K denotes the dimension
of K. Q and K are used to determine the attention scores. W stands for the output mapping matrix, h is the MSA head number,
and y is the MSA output. It is assumed that the input size is HHWxC, where C is the sum of spectral bands and HHW is the
space size. Since the size of every window is fixed to C/4, each window is split equally. Following division, the sizes of each
window are [C/4, C/4, C/4, C/4]. Next, MSA is performed for each window. The window is then pushed in the spectral direction
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by half a window. At each window is [C/8,C/4,C/4,C/4,C/8] in size. MSA is performed again in every window. Thus, the
S-W-MSA procedure through m windows is

YO = [y ) @u()®. . SU(y™)] @

where @ resources concat, y is the statistics of the i-th window. Except for the window design, the remaining elements of
the S-SwinT module—MLP and layer normalisation connections—remain unchanged compared to SwinT. The formulas shown
below are in shadows:

7' =5—w—MsA(LN(Y"Y)) + Y (29)
y' = MLP (LN(Y)) + 7! (30)
71 =5 — sw — MSA (LN(Y!)) +Y! (31)
Y1 = MLP (LN(71+1)) + 7+ (32)

4. Results and Discussion

The deep learning framework PyTorch was used with an NVIDIA Tesla V100 featuring 32 GB of video RAM. Table 2 lists
the simulation parameters.

Table 2: Experiment situation

Parameter Values Improvement Experimental Environment Configuration
Intel(R) Xeon(R) Gold 6371C CPU@2.60 GHz CPU
NVIDIA Tesla V1000 GPU32 G GPU
32G RAM
100 G Magnetic disk
PyTorch Deep learning framework
Windows 100(64-bits) Operating Scheme
Python 3.7.1CUDA10.1 Others

4.1. Validation of Feature Extraction Models
Tables 3 and 4 explain the experimental analysis of the proposed feature extraction model based on 70%-30% and 80%-20%.

Table 3: Validation analysis of proposed feature extraction on 70%-30%

Module Precision Recall F1 Accuracy (%)
LeNet 0.8298 0.8508 0.8401 84.06
ResNet 0.8679 0.8648 0.8663 86.12
VGGNet 0.9011 0.8883 0.8947 89.78
AlexNet 0.9279 0.9109 0.9193 92.71
MAlexNet-GJO 0.9467 0.9337 0.9402 93.82

Table 3 above represents the Validation Analysis of projected feature extraction at a 70%-30% ratio. In the investigation of the
LeNet module, the precision was 0.8298, the recall was 0.8508, the F1 score was 0.8401, and the accuracy was 84.06. Then,
the ResNet module achieved a precision of 0.8679, a recall of 0.8648, an F1-score of 0.8663, and accuracy of 86.12%. Then,
the VGGNet module achieved a precision of 0.9011, recall of 0.8883, F1-score of 0.8947, and accuracy of 89.78%.
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Figure 3: Visual representation of the proposed feature extraction model

Then, the AlexNet module achieved a precision of 0.9279, a recall of 0.9109, an F1-score of 0.9193, and accuracy of 92.71%.
Then, the MAlexNet-GJO module achieved a precision of 0.9467, a recall of 0.9337, an F1-score of 0.9402, and accuracy of
93.82%. Figure 3 presents the graphical description of the analysis on feature extraction models.

Table 4: Validation analysis of proposed feature extraction on 80%-20%

Module Precision Recall F1 Accuracy (%)
LeNet 0.8333 0.8525 0.8427 84.25
ResNet 0.8718 0.8718 0.8718 86.87
VGGNet 0.9038 0.8952 0.8995 89.56
AlexNet 0.9295 0.9148 0.9220 92.06
MAlexNet-GJO 0.9551 0.9400 0.9475 94.44

In Table 4 above, the Validation Investigation of the projected feature extraction is presented for an 80%-20% split. In the
investigation of the LeNet module, the precision was 0.8333, the recall was 0.8525, the F1-score was 0.8427, and the accuracy

was 84.25.

Accuracy (%)
o O OO0 0 O
(S I SN - - - =1

=]
=]

-~
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=70%-30%

80%-20%

Feature Extraction

Figure 4: Graphical representation of the proposed model in terms of accuracy
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Then, the ResNet module achieved precision, recall, F1-score, and accuracy of 0.8718, 0.8718, 0.8718, and 86.87%,
respectively. Then, the VGGNet module achieved a precision of 0.9038, a recall of 0.8952, an F1-score of 0.8995, and accuracy
of 89.56%. Then, the AlexNet module achieved a precision of 0.9295, a recall of 0.9148, an F1-score of 0.9220, and accuracy
of 92.06%. Then, the MAlexNet-GJO module achieved a precision of 0.9551, a recall of 0.9400, an F1-score of 0.9475, and
accuracy of 94.44%. Figure 4 presents a graphical representation of the feature extraction models' accuracy.

4.2. Verification of Proposed Classifier Model
Tables 5 and 6 present the validation results for the proposed classifier across various training-to-testing ratios.

Table 5: Validation of the proposed model for 70%-30%

Module Precision Recall F1 Accuracy (%)
Multi-ScaleAlexNet 0.9163 0.9159 | 0.9134 91.96
TFFbU 0.8572 0.8565 | 0.8568 85.49
Olive-EfficientDet 0.9224 0.9281 | 0.9264 86.62
Self-Attention 0.9369 0.9360 | 0.9364 93.59
FSSATM 0.9551 0.9400 | 0.9475 94.44

In Table 5 above, it is characterised that the Authentication of the proposed model is 70%-30%. In the analysis of the multi-
ScaleAlexNet module, the precision was 0.9163, the recall was 0.9159, the F1 score was 0.9134, and the accuracy was 91.96.
Then, the TFFbU module achieved a precision of 0.8572, an F1-score of 0.8565, and an accuracy of 85.49%. Then, the Olive-
EfficientDet module achieved a precision of 0.9224, recall of 0.9281, F1-score of 0.9264, and accuracy of 86.62%. Then, the
Self-Attention module achieved a precision of 0.9369, recall of 0.9360, F1-score of 0.9364, and accuracy of 93.59%. Then, the
FSSATM module achieved a precision of 0.9551, a recall of 0.9400, an F1-score of 0.9475, and an accuracy of 94.44%. The
accuracy of the proposed classifier is given in Figure 5.

FSSATM

Self-Attention

Olive-EfficientDet

Classifiers

TFFbU

Multi-Scale AlexNet

75 80 85 20 95 100
Accuracy (%)

70%-30% m80%-20%

Figure 5: Accuracy analysis of the proposed classifier

In Table 6, the overhead represents the Experimentation of the projected model for an 80%-20% split. In the investigation of
the multi-scale AlexNet module, the precision was 0.8639, the recall was 0.8747, the F1-score was 0.8693, and the accuracy
was 86.91%. Then, the TFFbU module achieved a precision of 0.8925, a recall of 0.8714, an Fl-score of 0.8818, and an
accuracy of 88.16%.

Table 6: Experimentation of the proposed model for 80%-20%

Module Precision Recall F1 Accuracy
Multi-ScaleAlexNet 0.8639 0.8747 0.8693 86.91
TFFbU 0.8925 0.8714 0.8818 88.16
Olive-EfficientDet 0.9216 0.9309 0.9262 92.27
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Self-Attention 0.9595 0.9513 0.9554 95.86
FSSATM 0.9756 0.9715 0.9735 97.24

Then, the Olive-EfficientDet module achieved a precision of 0.9216, recall of 0.9309, F1-score of 0.9262, and accuracy of
92.27%. Then, the Self-Attention module achieved a precision of 0.9595, an F1-score of 0.9513, a recall of 0.9554, and an
accuracy of 95.86%. Then, the FSSATM module achieved a precision of 0.9756, a recall of 0.9715, an F1-score of 0.9735, and
an accuracy of 97.24%. Figure 6 presents a graphical representation of the proposed classifier for various training-to-testing
data ratios.
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Figure 6: Visual analysis of the proposed model for different ratios
5. Conclusion

Numerous academics have attempted to utilise learning approaches to identify fruits in the Fruit-360 dataset, which comprises
90,483 sample photos and 131 fruit classifications. However, none of the earlier efforts focused on managing the entire set of
131 fruit classes and their corresponding fruit pictures. Consequently, this study presents a unique and effective attempt to
identify all photos in the Fruit-360 dataset using a feature extraction and classification technique based on deep learning. Nine
feature descriptors were employed to evaluate the performance of the updated AlexNet algorithm in image-based classification,
with GJOA utilised for fine-tuning feature extraction. Thus, this study effort presents a modified version of the AlexNet
technique that is both resilient and thorough. The model employs shifting windows as a self-attentive method to compensate
for its inability to acquire local contextual data during categorisation. The learning curve and the confusion matrix were used
to evaluate the performance of the tested algorithm. Here, it can be said that the suggested algorithms achieved better results
than any other procedures for the given job. Consequently, the findings provide strong evidence that the proposed approach is
more efficient and accurate than CNN-based methods for multiple-class image classification. Furthermore, the system
demonstrated its ability to process the whole Fruit-360 dataset with reduced processing resources. The suggested feature
extraction classifiers are suitable for real-time applications, as inferred from the findings, as well as economical scheme
implementations. One major drawback of the suggested technique is that, depending on the dataset, it may require a different
structure (e.g., a different number of levels and total inputs) to achieve greater accuracy. Consequently, a general framework
for image-based categorisation issues should be implemented in future efforts.
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